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Abstract

As modern hardware architectures evolve to support increas-
ingly diverse, complex instruction sets for meeting the per-
formance demands of modern workloads in image process-
ing, deep learning, etc., it has become ever more crucial for
compilers to provide robust support for evolution of their in-
ternal abstractions and retargetable code generation support
to keep pace with emerging instruction sets. We propose
Hydride, a novel approach to compiling for complex, emerg-
ing hardware architectures. Hydride uses vendor-defined
pseudocode specifications of multiple hardware ISAs to au-
tomatically design retargetable instructions for AutoLLVM
IR, an extensible compiler IR which consists of (formally de-
fined) language-independent and target-independent LLVM
IR instructions to compile to those ISAs, and automatically
generated instruction selection passes to lower AutoLLVM IR
to each of the specified hardware ISAs. Hydride also includes
a code synthesizer that automatically generates code gener-
ation support for schedule-based languages, such as Halide,
to optimally generate AutoLLVM IR. Our results show that
Hydride is able to represent 3,557 instructions combined in
x86, Hexagon, ARM architectures using only 397 AutoLLVM
IR instructions, including (Intel) SSE2, SSE4, AVX, AVX2,
AVX512, (Qualcomm) Hexagon HVX, and (ARM) NEON vec-
tor ISAs. We created a new Halide compiler with Hydride
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using only a formal semantics of Halide IR, leveraging the
auto-generated AutoLLVM IR and back-ends for the three
hardware architectures. Across kernels from deep learning
and image processing, this compiler is able to perform just as
well as the mature, production Halide compiler on Hexagon,
and outperform on x86 by 8% and ARM by 3%. Hydride also
outperforms the production Halide’s LLVM back end by 12%
on x86, 100% on HVX, and 26% on ARM across the same
kernels.
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1 Introduction

Domain-specific hardware accelerators and complex vector
extensions to existing architectures are emerging to effi-
ciently support modern workloads in domains such as deep
learning, image processing, etc. These custom accelerators
and CPU/GPU extensions provide high performance and
energy efficiency for important operations like matrix multi-
plication, tensor convolution, and others. Architectures such
as Qualcomm’s Hexagon DSP [9, 17] and Intel’s AVX-512
vector ISA [12] have been extended with specialized instruc-
tions to optimize tensor and stencil computations. These
include SIMD and non-SIMD (cross-lane) instructions to per-
form dot products, reduction operations, and in-register data
movement across vector lanes (aka, swizzles). The number of
instructions in ISAs such as x86 and Hexagon will continue
to grow to support new workloads in evolving domains.

https://doi.org/10.1145/3620665.3640385
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Challenges. A major challenge faced by compilers for
such architectures is the difficulty of generating efficient code
for these complex instructions. Domain-specific language
(DSL) compilers such as Halide [11], TVM [7], and XLA [23]
rely on retargetable compiler infrastructures such as LLVM
[14] to generate code for a wide range of architectures. These
languages depend heavily on complex vector hardware for
high performance. Unfortunately, extending infrastructures
like LLVM to keep pace with evolving hardware instruction
sets has proven difficult because the target-independent com-

piler IR has no inherent extensibility mechanisms that make

adding support for new instructions naturally simple. This
process of extending compilers to support new instructions,
especially complex ones, presents a number of challenges:
(a) designing a new target-independent operation for a com-
piler IR entails meticulously searching long documents span-
ning thousands of pages on different hardware ISAs and
finding common type of instructions (for example dot prod-
uct instructions across multiple hardware targets) and then
manually designing a target-independent instruction that
can be lowered to those target instructions – this process
is cumbersome and time-consuming; (b) generating code
for each hardware target requires arduously implementing
pattern matching code to translate input sequences of target-
independent instructions to hardware instructions – this
requires lot of engineering time and assiduous effort to en-
sure generated code is correct, and this gets significantly
harder as ISAs grow larger and more complex; (c) and finally,
the compiler IR and lowering support must automatically
evolve with hardware ISAs.
Current Approaches. In order to overcome challenge

(a) in compiler infrastructures such as LLVM and GCC, de-
velopers often implement target-specific intrinsics in com-
piler IRs that map to the corresponding target instructions
directly. This approach eliminates the need to design target-
independent operations that can be retargeted to other target
ISAs. However, this approach severely hinders retargetabil-
ity (and compilers mentioned below suffer from the same
limitation because they all rely on LLVM). These compiler
infrastructures do not address challenge (b) because they
do not support automatic generation of target-specific in-
trinsics for complex instructions for a given input program.
And neither of these state-of-the-art production compiler
infrastructures address challenge (c) since their IRs and the
lowering support for them does not evolve with target ISAs
without manual engineering effort.

Because code generation and optimization support for
LLVM IR is unable to automatically generate efficient, com-
plex non-SIMD and swizzle instructions for different architec-
tures, performance-sensitive DSL compilers like Halide use
separate, target-specific back ends generating target-specific
LLVM intrinsics for architectures such as x86, Hexagon,
ARM, Power, etc. These back-ends in Halide use manually-
crafted, target-specific pattern-matching rules to map the

DSL-specific IR to complex vector hardware instructions.
This approach defeats one key advantage of sophisticated,
language-independent compiler infrastructures like GCC
and LLVM because it reimplements a complex part of their
functionality for a single high-level language. This approach
also fails to address challenges (b) and (c). Manually engineer-
ing a back end for every target for each DSL compiler leads to
replication of engineering effort and is, therefore, extraordi-
narily inefficient. Manually crafting separate, target-specific
pattern-matching rules is cumbersome, error-prone and re-
quires a lot of engineering effort and time, especially for
large and complex ISAs, and the back-ends must be manually
updated when new target instructions need to be supported.
Vegen [8] attempts to address challenge (b) by automati-

cally generating pattern-matching rules using x86 instruc-
tion semantics. However, Vegen falls short due to several
reasons: the pattern-matching rules are brittle since it does
not generate multiple variants of patterns and any deviation
from expected input code sequence would result in a failure
to generate optimal code; it does not support specialized
swizzle instructions critical for performance of tensor and
stencil computations; and it fails to address (c), above, be-
cause it uses a fixed, language-independent compiler IR with
no mechanism to evolve the IR.
Other projects, like Rake [1, 20], Diospyros [27] and Por-

cupine [10] partially address challenge (b) by leveraging
program synthesis techniques for code generation but they
only support a small number of target instructions and do not
scale well to support synthesis of large, complex ISAs. More-
over, Rake requires users to modify source code of Halide
programs1 that use common computations like matrix mul-
tiplication to expose the dot product and data swizzle pat-
terns explicitly to make synthesis tractable, which places
a heavy burden on the programmer and violates the core
Halide principle of separating computational specifications
from scheduling optimizations. Rake [1, 20] defines a target-
agnostic, language-independent IR, called Uber IR, to synthe-
size HVX and ARM intrinsics in LLVM. However, its Uber
IR is manually designed and that approach is not scalable
when considering large, evolving ISAs like x86 or extending
support for HVX and ARM; therefore, fundamentally fails
to address challenge (c).
Our Approach.We propose an alternative approach in

which formally defined language-independent and target-
independent LLVM IR operations, along with target-specific
instruction selection passes, are automatically generated us-
ing only the vendor specifications of one or more hardware
ISAs. We call this autogenerated IR the AutoLLVM IR. This
enables a shared compiler infrastructure to evolve rapidly,
while also achieving nearly complete hardware instruction
coverage: together, these capabilities make the infrastructure

1github.com/uwplse/rake/blob/master/benchmarks/
hexagon/halide/matmul/src/matmul_generator.cpp
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both, highly extensible (to support new instructions in an
existing ISA) and retargetable (across multiple ISAs). More-
over, because all the IR operations are defined using a precise,
executable formal semantics, we use program synthesis in a
language front-end (e.g., for a DSL like Halide) to generate
highly efficient target-specific code that benefits fully from
evolving vector hardware operations, without using brittle
pattern matching.

Using this approach, we design a system called Hydride,
which simultaneously solves three key problems: enabling
automated design of the language-independent compiler IR
to support multiple, rapidly evolving hardware ISAs, maxi-
mizing instruction coverage for complex ISAs, and avoiding
the brittle pattern-matching approach to instruction selec-
tion. Hydride operates in two phases. The offline phase auto-
matically generates compiler code during compiler develop-
ment time (including the AutoLLVM IR, its formal semantics,
target-specific LLVM IR instructions and their semantics
for each specified target, and simple lowering from the for-
mer to the latter). The online phase uses program synthesis
for target-specific translation from the front-end IR to Au-
toLLVM IR. This approach achieves both high performance
(by using target information when synthesizing AutoLLVM
IR code sequences) and scalability (because AutoLLVM IR
is target-agnostic and therefore much more compact than
individual target ISAs (Section 3)).

In summary, our key contributions are:

• Anewmethodology to automatically design a language-
independent and target-independent compiler IR using
a novel technique based on "similarity checking" of
target instructions of multiple architectures.
• A new compiler infrastructure, Hydride, in which all
compiler stages from DSL IR down to target-specific
instructions (front-end IR to AutoLLVM IR transla-
tion, language-independent AutoLLVM IR operations,
and translation to target-specific LLVM intrinsics) are
automatically generated.
• A novel, scalable synthesis methodology that exploits
the equivalence classes of target instructions, creates
synthesis grammars separately for input subexpres-
sions, together with synthesis strategy for complex
cross-lane swizzle operations, to make program syn-
thesis times reasonable with Hydride.
• An evaluation of this compiler for various kernels from
image processing and deep learning on x86, Hexagon
and ARM architectures, with no modifications to orig-
inal Halide source code. Our results show that we
achieve similar performance to the carefully engineered
production compiler for Halide for all three architec-
tures, despite orders-of-magnitude lower compiler engi-

neering effort.

2 Hydride Overview

The key idea in Hydride is to use the vendor-defined specifi-

cations of (multiple) hardware ISAs to automatically generate

their formal semantics and reason about similarities between

the various ISAs to automatically design or extend a formally-

defined language-independent and target-independent com-

piler IR using parameterized operations. This idea has several
implications for the capabilities of Hydride. First, formal se-
mantics of hardware ISAs enable Hydride to automatically
design a retargetable compiler IR that can evolve automat-
ically with hardware ISAs. Second, Hydride can automat-
ically maximize the coverage of large ISAs with orders-of-
magnitude lower engineering effort than state-of-the-art sys-
tems. Third, the formal semantics of Hydride’s compiler IR
enables language front ends to automatically target it using
program synthesis techniques and, moreover, parameter se-
lection for the target-independent IR operations enables the
synthesizer to generate target-specific instruction sequences
for high performance; together, these eliminate the need
for manually engineering target-specific back ends in these
compilers.

Figure 1 shows the workflow of Hydride. Hydride oper-
ates in two phases: an offline and an online phase. During the
offline phase, Hydride Automatic IR Generator (Section 3)
uses ISA pseudocode specifications provided by hardware
vendors to automatically generate language-independent
instructions for the LLVM compiler IR, along with their se-
mantics, which we call the AutoLLVM IR. We define these
new operations as LLVM intrinsic functions to avoid the
need for changes to existing LLVM passes. During the online
phase (i.e., at compilation time), Hydride’s Code Synthesizer
(Section 4) uses syntax-guided synthesis to translate code
for an input Halide program from the Halide front-end’s IR
to AutoLLVM IR.

3 Hydride’s Automatic IR Generator

The Hydride Automatic IR Generator uses hardware ISA
semantics to look for similar instructions (described in detail
below). One of the main ideas in the approach used in Hy-
dride is that similar instructions from one or more machine

instruction sets (ISAs) can be grouped into a (parameterized)

equivalence class and represented as a machine-independent

IR operation with symbolic parameters. Different assignments
of concrete values to those parameters represent different
members of the equivalence class, i.e., different machine-
specific instructions. This also implies that the target-specific
back-end instruction selectors only need nearly trivial one-
to-one translation. Moreover, instead of requiring a formal
ISA semantics (needed for similarity checking) to be manu-
ally specified for each hardware ISA, Hydride automatically
generates the ISA semantics from pseudocode specifications
of instruction sets already specified by the hardware ven-
dors in their respective programmer’s manuals: [13] by Intel;
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Fig. 1. Overview of compilation workflow Hydride with Halide.
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Fig. 2. Example of similar interleave instructions in x86.

[18] by Qualcomm; and [2] by ARM. An example of such
specification for an Intel x86 instruction is shown in Figure 3.
These specifications are parsed (using ISA-specific parsers
we wrote) and translated into formal, machine-executable
ISA semantics. Hydride uses the instruction semantics to
perform similarity checking, explained next.

3.1 Similar Instructions and Equivalence Classes

Intuitively, Hydride deems two instructions as being simi-

lar if they perform equivalent computations and/or equiva-
lent data movements, after abstracting away target-specific
numerical properties like element bitwidth, vector lengths,
shift factors, bit offsets, etc. For example, the x86 instruc-
tion _mm512_add_epi16 operates on 512-bit registers
with 16-bit elements and _mm256_add_epi8 operates on
256-bit registers with 8-bit elements. Both fundamentally
perform the same kind of computation: element-wise vector
add. Therefore, these instructions are deemed to be similar.

The parameterization for equivalence can be quite expres-
sive, in practice. Figure 2 shows an example of more complex
similar instructions. These interleave shuffles are commonly
used for changing data layouts (for example, performing
matrix transpose) by interleaving data at different offsets
into the lanes of input vector registers. Even though the vec-
tor sizes, element sizes, size of window of elements being
interleaved and offset into the windows in both instructions

are different, the data movement pattern are similar; the
instruction-specific numerical quantities and details can be
abstracted away while analyzing mainly the data layout pat-
tern to realize that they are similar.

Now we formalize the notion of and the process of finding
similar instructions. Suppose an instruction 𝐼 has operational
semantics Φ(𝐼 , ®𝑘𝐼 ), which depends on numerical parameters,
®𝑘𝐼 = 𝑘𝐼1 · · ·𝑘𝐼𝑟 . For example, _mm512_add_epi16 has two
numerical parameters, 𝑘1 = 16 (element size), 𝑘2 = 512
(vector size). We construct the parameterized (symbolic)
operational semantics of 𝐼 , denoted Σ(𝐼 , ®𝛼 𝐼 ) by substitut-
ing the numerical parameters with corresponding symbolic
parameters, ®𝛼 𝐼 = 𝛼 𝐼

1 · · ·𝛼 𝐼
𝑟 , or more formally, Σ(𝐼 , ®𝛼 𝐼 ) =

Φ(𝐼 , ®𝑘𝐼 ) |𝛼𝑖/𝑘𝑖 ,1≤𝑖≤𝑟 .
We define two instructions, 𝐼 and 𝐽 as similar if both their

semantics have the same number of numerical parameters
(i.e., | ®𝑘𝐼 | = | ®𝑘 𝐽 |) and the parameterized operational semantics
of both instructions are equivalent, i.e., Σ(𝐼 , ®𝛼 𝐼 ) ≡ Σ(𝐽 , ®𝛼 𝐽 )
for the same concrete values for corresponding numeri-
cal parameters. For example, when the numerical param-
eters of _mm512_add_epi16, 𝑘1 = 16 and 𝑘2 = 512,
are substituted into numerical parameters, 𝑘1 and 𝑘2, of
_mm256_add_epi8, their operational semantics can be
verified to be equivalent using satisfiability modulo theories
(SMT) solvers. Likewise, when the numerical parameters of
_mm512_add_epi16 (𝑘1 = 8 and 𝑘2 = 256) are substituted
into numerical parameters of _mm512_add_epi16, their
operational semantics are deemed as equivalent. Section 3.3
describes the algorithm for finding similar instructions.
Given one or more target hardware ISAs, Hydride con-

structs equivalence classes of all machine instructions in those

ISAs, such that two instructions 𝐼 , 𝐽 are assigned to the same
equivalence class if and only if Σ(𝐼 , ®𝛼 𝐼 ) ≡ Σ(𝐽 , ®𝛼 𝐽 ). Since all
instructions in an equivalence class will have the same num-
ber of parameters, Hydride can define a (target-independent)
instruction with that many symbolic parameters to represent
all instructions in the class, say, 𝑉 ( ®𝛼𝑉 ). Once Hydride will
have computed similarity as explained later, below, it simply
constructs the equivalence classes of similar instructions
and defines a target-independent IR operation, 𝑉 , in this
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manner for each equivalence class. We call the resulting IR
definition the AutoLLVM IR. Note that each target-specific
instruction, 𝐼 , in a class has a fixed assignment of numerical
values to those symbolic parameters. Thus, a language front
end can perform AutoLLVM IR generation in an optimized
target-specific manner simply by selecting the appropriate
numerical parameter values. Alternatively, machine code
generation from the symbolic 𝑉 to any particular target in-
struction in the equivalence class simply requires selecting
the appropriate numerical parameter values.

3.2 Hydride IR Generator

Checking for similarity between instructions requires ana-
lyzing the formal semantics for target ISA instructions (Φ(·))
and for their abstracted counterparts (Σ(·)). The semantics
of such instructions can be expressed using bitvector and
integer operations [3]. We define a straightforward program
representation called Hydride IR to represent semantics, to-
gether with several transformations on the IR, including loop
rerolling, inlining, and constant propagation, and a dataflow
analysis for type inference.

Checking for instruction similarity requires proving equiv-
alence of the semantics. Solver-aided DSLs (SDSL) leverage
SMT solvers to provide verification, synthesis and solving
capabilities. Therefore, defining Hydride IR as a solver-aided
DSL to express formal, machine-executable ISA semantics is
useful in Hydride. Hydride uses Rosette [26] to define and
implement Hydride IR, but makes some improvements to
Rosette’s synthesis engine for better efficiency (Section 4).
Hydride parses pseudocode specifications of x86, ARM

and HVX instructions (such as the example in Figure 3(a)) us-
ing separate parsers and translates them into their semantics
represented in Hydride IR. This approach enables Hydride
to maximize the coverage of supported instructions.

3.3 Similarity Checking Engine

This component of Hydride performs the following steps.
Canonicalization of Hydride IR code. Hydride canon-

icalizes Hydride IR by performing function inlining, loop
rerolling, etc. to ensure that all semantics of instructions
contain at least two loops in a loop nest: one outer loop
for representing iteration over lanes of input/output vector
registers, and an inner loop for representing iteration over
elements in a given lane (example in Figure 3(b)). This makes
instruction-specific quantities such as number of elements,
element size, vector size, etc. easier to identify before they
are abstracted away. For SIMD instructions which have one
loop iterating over elements of vectors, this step adds an
artificial inner loop with one iteration.

Extraction of constants. Hydride extracts the constants
from Hydride IR to abstract away any instruction-specific
quantities like vector sizes, element sizes, etc. To ensure
that constants for different parameters are not conflated to-
gether, and to ensure that bitwidths of two bitvectors are

Algorithm 1 Algorithm for the Similarity Checking Engine
Input: List of canonicalized ISA semantics in Hydride IR ISA_Sema

Output: Set of equivalence classes EqClasses
function RunSimilarityCheckingEngine(ISA_Sema)

EqClasses← A set of Equivalent classes generated by Hydride
SymSema← ExtractConstants(ISA_Sema) // Produce symbolic semantics

EqClasses← {}
PerformEqChecking(SymSema, EqClasses) // Perform similarity checking

PermuteArgs(EqClasses) // Permute args of functions in EqClasses

PerformEqChecking(SymSema, EqClasses) // Perform similarity checking again

RefineEqClasses(EqClasses) // Refine equivalence classes
SymSema← ExtractConstants(ISA_Sema) // Produce symbolic semantics again

PerformEqChecking(SymSema, EqClasses) // Perform similarity checking again

EliminateUnnecessaryArgs(EqClasses) // Eliminate dead arguments

return EqClasses

end function

function PerformEqChecking(SymSemanticsList, EqClasses)
for all InstSema1 in SymSemanticsList do

for all InstSema2 in SymSemanticsList do

if InstSema1 != InstSema2 then

// Verify equivalence on symbolic inputs using SMT solvers

if verifyEquivalence(InstSema1, InstSema2) == true then

𝐸𝑞𝐶𝑙𝑎𝑠𝑠𝑒𝑠 ← 𝐸𝑞𝐶𝑙𝑎𝑠𝑠𝑒𝑠
⋃

𝐼𝑛𝑠𝑡𝑆𝑒𝑚𝑎1
⋃

𝐼𝑛𝑠𝑡𝑆𝑒𝑚𝑎2
end if

end if

end for

end for

end function

not extracted twice if they are guaranteed to have the same
bitwidth, Hydride traverses the use-def chains in Hydride
IR and performs a simple bitwidth analysis by accounting
for legality constraints of bitvector operations. For example,
if the IR code contains %c = bvadd %a, %b; %a, %b and
%c must have equal bitwidths for the bitvector add to be
legal; therefore, Hydride only extracts bitwidth of one of
them only once. Figure 3(c) shows the constants extracted
as parameters from the semantics of the high interleave in-
struction. Hydride traverses Hydride IR for each instruction
with semantics Φ(𝐼 , ®𝑘𝐼 ) to extract constants ®𝑘𝐼 = 𝑘𝐼1 · · ·𝑘𝐼𝑟
and generate the symbolic semantics Σ(𝐼 , ®𝛼 𝐼 ).
Equivalence Checking Hydride uses the following cri-

teria to determine whether to perform similarity checking
between two instructions since performing it naively be-
tween thousands of instructions would take several hours.

• # of arguments in the IR functions must be the same.
• # of arguments of bitvector type must be the same.
• # of arguments of integer type must be the same.

Hydride uses Algorithm 1 for performing similarity check-
ing. The algorithm shows how Hydride performs similar-
ity checking between representative instructions from each
equivalence class, and not all individual instructions. After
all the equivalence classes are created, Hydride performs
further transformations discussed below.
Reorder Instruction Arguments. Instructions such as

_mm512_mask_blend_epi8 and_mm512_mask_mov-
_epi8 are semantically equivalent (same vector length for
inputs and output, same element size, etc.) except the order
of the vector arguments is different. So once the equivalence
classes are generated by executing Algorithm 1, Hydride
permutes the arguments of functions representative of each
equivalence class and performs similarity checking again
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;; After loop rerolling, function inling, etc.
func _mm256_unpackhi_epi16 ( bv256 a, bv256 b ) {

;; Outer loop INTERLEAVE_HIGH_WORDS’s call sites
for ([%out.it (range 0 256 128)]) {
;; Inlined code from INTERLEAVE_HIGH_WORDS
for ([%in.it (range 0 128 32)]) {
%factor = div i32 %in.it, i32 2
%offset.0 = add i32 %factor, i32 64
%low.i = add i32 %out.it, i32 %offset.0
%high.i = add i32 %low.i, i32 15
;; Extract 16-bits long slices from a and b
%ext.a = bvextract bv256 a, i32 %low.i, i32 %high.i
%ext.b = bvextract bv256 b, i32 %low.i, i32 %high.i
;; Insert slices from a and b into dst
bvinsert bv16 %ext.a, bv256 dst, ...
bvinsert bv16 %ext.b, bv256 dst, ...
}

}
ret bv256 dst
}

(b) Canonicalized Semantics in Hydride IR (c) Extracted Constants
;;Code after extracting constants
func _mm256_unpackhi_epi16(bv a, bv b, i32 %vectsize,

i32 %winsize, i32 %winoffset, i32 %interleavesize,
i32 %elemsize, i32 %arg0, i32 %arg1, i32 %arg2){

;;Loop bounds are extracted and constants from loop body
;;are extracted using backwards and forwards data flow analysis.
for([out.it (range 0 %vectsize %winsize)]){

for([in.it (range %winoffset %interleavesize %elemsize)]){
%ifactor = div i32 in.it, i32 %arg1
%offset0 = add i32 %factor, i32 %arg2

%high.i = add i32 %low.i, i32 %arg0
;; Extract 16-bits long slices from a and b
%ext.a = bvextract bv256 a, i32 %low.i, i32 %high.i
%ext.b = bvextract bv256 b, i32 %low.i, i32 %high.i

(a) Intel’s pseudocode documentation for _mm256_unpackhi_epi16
DEFINE INTERLEAVE_HIGH_WORDS(src1[127:0], src2[127:0]){
dst[15:0]:=src1[79:64];  dst[79:64]:=src1[111:96];
dst[31:16]:=src2[79:64]; dst[95:80]:=src2[111:96];
dst[47:32]:=src1[95:80]; dst[111:96]:=src1[127:112];
dst[63:48]:=src2[95:80]; dst[127:112]:=src2[127:112];
RETURN dst[127:0];

}
dst[127:0]:=INTERLEAVE_HIGH_WORDS(a[127:0],b[127:0]);
dst[255:128]:=INTERLEAVE_HIGH_WORDS(a[255:128],b[255:128]);

(d) Insert hole

;;Code with hole generated by Hydride

;;Hole inserted by Hydride.
;;Missing op in terms of out.it, in.it, %low.idx.
%hole = call@hole.grammar(i32 out.it, i32 in.it, i32 %low.i, i32 256)
%high.i = add i32 %hole, i32 i32 %arg0
;;Hole is lower index of extractops
;;Extract 16-bits long slices from a and b
%ext.a = bvextract bv256 a, i32 %hole, i32 %high.i
%ext.b = bvextract bv256 b, i32 %hole, i32 %high.i

(e) Hole Definition for Synthesis
;; Definition of hole.grammar function 
(define-grammar (hole.grammar x y z len)
[expr
(choose x y z 
(+ (expr) (expr)) (- (expr) (expr)) 
(/ (expr) (expr)) (* (expr) (expr))
;; 0, 1, 2, 3, … (len – 1)
(range 0 len) 

)])

Fig. 3. Hydride parses ISA pseudocode in (a) to emit Hydride IR which is canonicalized using transformations such as loop
rerolling, function inlining, etc. in (b). Hydride then extracts constants to produce code in (c) and inserts hole in (d) (hole
defined in (e)) to synthesize the missing operation. After synthesis, %hole = add i32 %low.i, i32 0; where 0 is
abstracted away before similarity checking.

Fig. 4.Abstract syntax for the Hydride IR.

to merge the equivalence classes if they are deemed to be
equivalent.
Refining Equivalence Classes. Access patterns of ele-

ments of input vectors of the two instructions in Figure 2 are
similar: only the offsets into the lane at which the elements
in input vectors are extracted in two instructions are differ-
ent, i.e. the offset is 0 for the _mm256_unpackhi_epi16,
and it is 2 for the _mm512_unpacklo_epi8. Hydride’s
extract operations extract bit-slices from vectors, their
operands for low and high indices dictate the coordinates
of a slice extracted from a vector. The offset into the lanes
for _mm512_unpacklo_epi8 is be expressed by adding
2 to the low index for extract operations for the input
vector (the high index is taken care of since it is expressed in
terms of low index and bitwidth of a slice as: low_index
+ bitwidth - 1); however, no such addition is neces-
sary for _mm256_unpackhi_epi16 since the offset is 0
(Figure 3(b)). In order for Hydride to capture the similarity
between the access patterns of the two instructions, Hydride
inserts a hole in the semantics to add to the low indices to
account for the missing operation in _mm256_unpackhi-
_epi16; the hole.grammar function representing such
a hole is defined and invoked in Figure 3(e)). Based on this
definition, Hydride synthesizes an expression of this hole in
terms of inner and outer loop iterators, low index, and con-
stant values less than bitvector length. In this case, Hydride
synthesizes an add operation with %low.i added to 0 – this
constant is extracted and similarity checking is performed
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again (Algorithm 1), and this time the two instructions are
deemed to be similar. This technique can also account for
other access patterns such as striding access patterns.
Eliminating unnecessary arguments. Hydride con-

servatively extracts all constants from the semantics before
checking for similarity, which leads to complex function
signature with many arguments. Hydride then fixes the
signatures by going over all instructions in all equivalence
classes and eliminating arguments that have the same con-
crete value across all the instructions in an equivalence class.
Using all these techniques, Hydride’s Similarity Check-

ing Engine generates 136 equivalence classes for 2,029 x86
scalar and vector instructions, 177 classes for 1,221 ARM in-
structions and 115 classes for 307 HVX instructions (Table 1).
Hydride forms 397 equivalence classes for x86, ARM and
HVX instructions combined (3,557 hardware instructions).
The results are detailed in Section 6.2.

3.4 AutoLLVM IR Instructions

Hydride uses the equivalence classes generated by the Sim-
ilarity Engine to generate instructions for AutoLLVM, im-
plemented as LLVM intrinsic functions [24]. These are re-
targetable instructions with parameters representing the
abstracted constants, such that each combination of (con-
stant) parameter values generates a particular target-specific
instruction in the equivalence class. The signature of the
function in Hydride IR is used to generate the signature of
the AutoLLVM intrinsic, except that vector type information
like number of elements and size of each element are folded
into the LLVM vector type. Hydride automatically generates
an LLVM TableGen file with definitions of all AutoLLVM
intrinsics. Each of these AutoLLVM intrinsics is retargetable
to the target-specific instructions in the equivalence class it
represents. An example of AutoLLVM IR vector interleave
and dot product instructions from compiling Matrix Multi-
plication kernel on x86 is shown below.

%0 = c a l l <32 x i16 > @autollvm . i n t e r l e a v e ( <16 x i16 > %arg1 ,
↩→ <16 x i16 > %arg3 , 0 / ∗ l an e o f f s e t ∗ / )

%1 = c a l l <32 x i16 > @autollvm . i n t e r l e a v e ( <16 x i16 > %arg2
↩→ , <16 x i16 > %arg4 , 8 / ∗ l an e o f f s e t ∗ / )

%2 = c a l l <32 x i16 > @autollvm . do tp roduc t ( <32 x i16 > %arg0 ,
↩→ <32 x i16 > %0 , <32 x i16 > %1 )

3.5 Low-level Code-Gen Generator

This component enables Hydride to automatically gener-
ate parts of code generation support using the information
about similar instructions (both inter-architectural and intra-
architectural) from the Similarity Checking Engine. The
Code-Gen Generator consists of the following components.
Rosette-to-LLVM Translator. The code synthesized by

Hydride’s Code synthesizer (Section 4) is Rosette code with
target-agnostic instructions represented as opaque function
calls. The Rosette-to-LLVM Translator translates the synthe-
sized code to AutoLLVM IR instructions.

Pattern-matching-based, Target-specific Code Gener-

ator. The Hydride Code-Gen generator automatically gener-
ates simple, 1-1 pattern matching rules that translate AutoL-
LVM IR instructions to existing target-specific intrinsics in
LLVM IR. Hydride is able to do this because it keeps track of
original values of all the instruction-specific quantities that
were abstracted away to form AutoLLVM IR instructions. For
example, this helps generate x86 instructions for AutoLLVM
IR code above shown in Row 2 of Table 3.

4 Hydride Code Synthesizer

The Hydride Code Synthesizer is the second major com-
ponent of Hydride. It enables automatic generation of a
front-end translator to AutoLLVM instructions, thereby elim-
inating the need for target-specific back ends in front-end
compilers. It leverages the AutoLLVM IR semantics gener-
ated by Hydride’s Similarity Checking Engine.

We designed a prototype front-end for the Halide DSL, cre-
ating a compiler from Halide to LLVM using Hydride. Like
Rake [1], our front-end takes as input Halide IR lowered from
an input Halide program after all scheduling optimizations
have been applied, including vectorization, parallelization
and tiling, and synthesizes an equivalent target-specific pro-
gram. However, Hydride provides two major improvements
over Rake, both of which are important for practical usage.
First, Hydride synthesizes an equivalent target program
from thousands of potential ISA operations, instead of just a
few. The results of the offline stage of Hydride are essential
to making the synthesis scalable enough for this to be prac-
tical, which occurs in two distinct ways: (1) The automatic
generation of the target-specific and AutoLLVM instruction
semantics is essential to target multiple large instruction sets,
like x86 and ARM, with thousands of instructions. (2) The
results of similarity checking in the offline stage are useful in
identifying “potentially relevant instructions” and then prun-
ing instructions from those subsets by using their similarity.
Second, Hydride explores greater expression depths in the
input Halide code compared with Rake, which enables it
to generate complex non-SIMD operations like dot-product
automatically, instead of requiring manual changes to the
algorithms in Halide source programs, as needed in Rake.

4.1 Automatically Generated Synthesis Framework

To perform synthesis, Hydride’s Code Synthesizer consumes
the automatically generated dictionary of AutoLLVM In-
structions and creates a Syntax Guided Synthesis (SyGuS)
framework in Rosette. Rosette’s SyGuS functionality requires
users to provide formal semantics of the input and output
languages, an input program, and a grammar for the output
programs. The synthesis algorithm then searches for a can-
didate program in the grammar which is equivalent to the
input program. Importantly, this synthesizer is completely
independent of the target ISA and also of the source language
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(i.e., it is not specific to Halide): the target details are cap-
tured by the dictionary and the source language is captured
by a language semantics, both of which are inputs to the
synthesizer. Using these inputs, it automatically generates a
number of components in an offline stage:

• Interpreter : Implements the operational semantics
of the AutoLLVM IR operations defined by the Hy-
dride’s IR Generator in Rosette; these semantics are
used during synthesis.
• CostModel : Defines costmodel thatmaps AutoLLVM
IR expressions to an integer cost value, using a simple
sum of the individual latencies in an expression.
• Grammar Generator : Generates a grammar to drive
the SyGuS approach for each sub-expression in the
input program. This grammar includes only potentially
relevant AutoLLVM IR instructions in order to make
synthesis cost tractable. The grammar uses a bounded,
parameterized depth to ensure scalability (Section 4.3).
• Memoization Cache : Records synthesis results for
each input expression to enable reuse of these results.

4.2 Synthesis Strategy

Hydride uses Counterexample Guided Inductive Synthe-
sis (CEGIS) [22], a capability added by us for Hydride, to
compile Halide IR operations to AutoLLVM IR while mini-
mizing an objective cost function. The Halide IR program
is first lowered into an equivalent expression in Rosette, us-
ing the semantics of Halide IR from [1]. To keep synthesis
feasible, Hydride extracts sub-expressions (which we call
windows) of bounded depth from the Halide IR program and
synthesizes equivalent code in AutoLLVM IR. The window
size and maximum output sequence size are parameters in
Hydride. Hydride incrementally increases the size of the
output sequence (i.e. the depth of the synthesis grammar)
when searching for minimum-cost expressions. This leads
Hydride to favor shorter instruction sequences and ones
that take less time to execute, estimated by summing target
instruction latencies. Additionally, Hydride leverages the
parameterization of the AutoLLVM IR to uniformly scale
(not truncate) the number of lanes in the vector ISAs for
synthesis. Solver time complexity grows exponentially with
the sizes of the bitvectors, and so reducing the sizes of the
bitvectors enables synthesis to be tractable for targets such
as HVX which can have 2048-bit vectors.
Algorithm 2 shows the iterative synthesis procedure Hy-

dride uses. Before invoking this procedure for an expression,
𝐸𝑥𝑝𝑟 , Hydride automatically generates a pruned grammar,
𝐺 , tailored to the expression, as described in Section 4.3.

Starting with a seed set of concrete inputs (line 4) , and
output vector lanes to verify equivalence (line 5), Hydride
generates constraints that the synthesized program should
produce the equivalent output as the input program only for
the vector-lanes in Failing-Lanes. A common paradigm in

Algorithm 2 CEGIS for compiling a single expression
Input: Grammar G, Specification Expr, CostModel C, ScaleFactor Sc
Output: Program Sol s.t. ∀𝑥.𝑆𝑜𝑙 (𝑥 ) = 𝐸𝑥𝑝𝑟 (𝑥 ) ∧𝐶 (𝑆𝑜𝑙 ) is minimized.
1: function Lanewise_Synthesis(G, Expr, C, Sc)
2: 𝑆𝑐𝑎𝑙𝑒𝑑𝐸𝑥𝑝𝑟 ← 𝑆𝑐𝑎𝑙𝑒𝐷𝑜𝑤𝑛 (𝐸𝑥𝑝𝑟, 𝑆𝑐 ) // Scale down number of lanes

3: // Create initial set of concrete inputs for synthesis
4: 𝐶𝐸𝑋 ← {RandomInputs(ScaledExpr), RandomInputs(ScaledExpr)}
5: Failing-Lanes← {0, 0} // Test both inputs on lane 0

6: do

7: 𝑎𝑠𝑠𝑒𝑟𝑡𝑠 ← EqualOnLane(G, ScaledExpr, CEX,Failing-Lanes)
8: // Synthesize solution that satisfies asserts & minimizes Cost C

9: 𝑆𝑜𝑙 ← 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒 (𝐺,𝐶, 𝑎𝑠𝑠𝑒𝑟𝑡𝑠 )
10: if Sol = 𝑢𝑛𝑠𝑎𝑡 then

11: 𝐺 ′ ← 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝐺𝑟𝑎𝑚𝑚𝑎𝑟𝐷𝑒𝑝𝑡ℎ (𝐺 )
12: return LANEWISE_SYNTHESIS(𝐺 ′, 𝐸𝑥𝑝𝑟,𝐶, 𝑆𝑐 )
13: end if

14: // Verify symbolically, returning counter example

15: 𝐶𝐸𝑋 ′ ← 𝑉𝑒𝑟𝑖 𝑓 𝑖𝑒𝑑𝐸𝑞𝑣 (𝑆𝑜𝑙, 𝑆𝑐𝑎𝑙𝑒𝑑𝐸𝑥𝑝𝑟 )
16: if 𝐶𝐸𝑋 ′ ≠ {} then

17: 𝐶𝐸𝑋 ← 𝐶𝐸𝑋
⋃
𝐶𝐸𝑋 ′

18: // Diff[i] = 1 if Sol(CEX’)[i] ≠ ScaledExpr(CEX’)[i],else 0

19: 𝐷𝑖𝑓 𝑓 ← 𝐷𝑖𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 (𝑆𝑜𝑙, 𝑆𝑐𝑎𝑙𝑒𝑑𝐸𝑥𝑝𝑟,𝐶𝐸𝑋 ′ )
20: Failing-Lanes← Failing-Lanes

⋃
𝐹𝑖𝑟𝑠𝑡𝑁𝑜𝑛𝑍𝑒𝑟𝑜𝐼𝑑𝑥 (𝐷𝑖𝑓 𝑓 )

21: end if

22: while𝐶𝐸𝑋 ′ ≠ {}
23: if 𝑉𝑒𝑟𝑖 𝑓 𝑖𝑒𝑑𝐸𝑞𝑣 (𝑆𝑐𝑎𝑙𝑒𝑈𝑝 (𝑆𝑜𝑙, 𝑆𝑐 ), 𝐸𝑥𝑝𝑟 ) = {} then
24: return 𝑆𝑐𝑎𝑙𝑒𝑈𝑝 (𝑆𝑜𝑙, 𝑆𝑐 )
25: end if

26: return LANEWISE_SYNTHESIS(G, Expr, C, 1)

vector ISAs is that a pattern of computation repeats across
certain sets of lanes: for SIMD operations the pattern repeats
for every lane; and for non-SIMD operations it repeats every
2, 4, etc lanes. Hydride leverages this repetition to synthe-
size programs using constraints over a subset of the output
vector lanes, as the computation pattern is repeated across
intervals in the vector lanes. The constraints are represented
as assertions (line 7). Then Hydride synthesizes programs
which are equivalent to the specification under these con-
straints while minimizing an objective cost function C (line
9). If the solver returns unsat (line 10), Hydride re-attempts
synthesis with larger grammar depth (line 12). Otherwise,
Hydride verifies equivalence of the synthesized program
with the input program for all lanes jointly with symbolic
inputs (line 15). If verification succeeds, then the desired
solution is achieved, and the algorithm exits the synthesis
loop (line 6 – 22). Otherwise, the solver returns a counterex-
ample (line 16). For any counterexample identified by the
verifier, Hydride identifies the failing lane for which the
output vectors differ (line 19-20) and appends it to the next
iteration of constraints. Synthesis is then repeated (loop from
line 6 – 22) with these additional constraints. Once an ex-
pression is synthesized, Hydride scales the expression back
up (i.e increases the number of vector lanes to the original
amount) and verifies its correctness against the specification.
If verification finds a counterexample, Hydride repeats the
procedure without scaling (line 26).

Therefore, Hydride optimizes the synthesis process across
vector lanes in two ways: (1) Constraining synthesis over
only a subset of lanes, and verifying the synthesized expres-
sion over the rest of the lanes. (2) Scaling down the number
of vector lanes for AutoLLVM IR operations for synthesis,
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which in turn reduces the bitvector sizes for the operands
and results, and then scaling the number of lanes back up.

4.3 Pruned Grammar Generation

Synthesizing code for a given input expression for large
ISAs such as x86, with thousands of instructions, can be
intractable because synthesis has doubly exponential com-
plexity. Therefore, another heuristic in Hydride to improve
tractability and speed up synthesis is to generate multiple
versions of pruned grammars and synthesize in parallel; in
other words, generate multiple smaller grammars with dif-
ferent subsets of AutoLLVM IR instructions, instead of one
complete one. Following steps describe how pruned gram-
mars are generated.

(a) Hydride omits an entire equivalence class (described
in Section 3.3) if either none of the operations (e.g.,
bvmul, bvadd) in an equivalence class matches any
operation in the input expression, or none of the in-
structions in an input expression for the given target
uses a vector length and element size supported by the
equivalence class.

(b) Hydride also eliminates any instruction that uses a
smaller element size than the minimum element size
in the input expression because generating such an
instruction would lead to information loss.

(c) Some viable instructions are more likely to be appro-
priate than others for a given input expression – de-
pending on the number of matching bitvector opera-
tions, and whether an instruction’s vector lengths and
element sizes match with the input expression. AutoL-
LVM IR operations which satisfy more of the above
properties are assigned a higher score value. Hydride
selects the top scoring 𝑘 ops from each equivalence
class in the final grammar, where 𝑘 is a parameter for
the Hydride code synthesizer (we use𝑘 between 3-4 in
our evaluation). The rationale for this heuristic is that
all of the operations within an equivalence class per-
form similar computations, so Hydride chooses only
those that have most in common with the input expres-
sion. The distribution of compute operations (e.g. arith-
metic operations) is balanced with type-conversion
operations (e.g., broadcast, sign-extend or truncate op-
erations). Swizzle operations (Section 4.4) are always
included independently of 𝑘 .

4.4 Synthesizing Sequences of Swizzle Instructions

After identifying viable non-swizzle instructions for the
pruned grammar, Hydride adds specialized swizzle patterns
to the grammar, instead of adding a single general permute
operation, which causes the synthesis to become intractable.
This approach enables synthesis to be practical and facili-
tates the use of more complex non-SIMD vector operations.
Hydride supports the following swizzle patterns:

1. Full Interleave Two Vectors: interleaves elements
of two vectors of same size.

2. Interleave/De-interleave SingleVector: interleaves/de-
interleaves the first and second halves of a vector.

3. Interleave First/Second Half of Two Vectors: inter-
leaves the first/second halves of two vectors of same
size and produces a vector of same size.

4. Concatenate First/Second Half of Two Vectors:
Concatenates the first/second halves of two vectors of
same size and produces a vector of same size.

5. Vector Rotate-Right: Right-rotates the order of ele-
ments of vector.

These swizzles are common in modern hardware architec-
tures; however, if a target architecture uses a novel swizzle
pattern, it would have to be added to Hydride manually.

5 Hydride Implementation

The pseudocode parsers for x86, HVX and ARM for Hydride
IR generation are all implemented in Python. To increase con-
fidence in the generated ISA semantics, we use random fuzz
testing for individual instructions and compare the results of
machine-executable semantics in Hydride IR against target-
specific C builtins on randomly-generated inputs. Specifica-
tions for x86 and HVX instructions do not clearly distinguish
between logical and arithmetic right shifts, and do not make
explicit the need to widen operands while performing satu-
rating left shifts, and so we manually modified the vendor’s
pseudocode specifications in such cases. Hydride’s Similar-
ity Checking Engine is also implemented in Python but it gen-
erates Rosette code for checking if semantics for two given
instructions are equivalent for symbolic bitvectors in Racket.
Hydride generates semantics of the target-agnostic AutoL-
LVM IR instructions and maps the instructions to target-
specific instructions using a Python dictionary. We reuse
Halide IR semantics (in Rosette) from Rake [1]. Hydride
Code Synthesizer is implemented in Python and Rosette.
The memoization cache for the synthesizer is implemented
as a hash table in Racket, the host language of Rosette.

6 Evaluation

We evaluate Hydride against the state-of-the-art, production
Halide’s target-specific back ends [11] and Halide’s LLVM
Back end [14] and Rake [1] across 33 Halide benchmarks
from image processing and deep learning domains on three
targets: x86, Hexagon and ARM. To compare against Halide’s
LLVM Back end, we let Halide emit LLVM IR (with opti-
mizations such as loop unrolling, tiling, etc. applied) and
apply optimizations on LLVM IR such as loop vectorization,
Superword-Level Parallelism Vectorization, Aggressive Inst-
combine, etc. These benchmarks have been hand-tuned by
us for x86, and by Qualcomm and Adobe for ARM and HVX.
The benchmarks include Matrix Multiplication on tensors of
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low batch sizes (1, 2 and 4) which have low arithmetic den-
sity and commonly found in large language models; and we
also evaluate some fused versions of deep learning kernels
that are commonly found in various neural networks (such
as average/max pool + add), and in MLP blocks, in particular
(matmul + bias + activation + matmul). For all experiments,
we target x86 with an Intel Xeon Silver 4216 CPU (16 cores,
2.1GHz, 22 MB L3 cache) with hyperthreading disabled; HVX
with a cycle-accurate simulator in Hexagon SDK v3.5.2 pro-
vided by Qualcomm; ARM with an Apple M2 CPU (3.49GHz,
16 GB memory, 16 MB L3 cache).

6.1 Case Study: Support for ARM in Hydride

x86 and Hexagon were the first two targets Hydride sup-
ported. The design and implementation of Hydride took a
little over a year, with two students (first two authors) re-
sponsible for implementing the major components. After a
year long effort, Hydride had proven to perform competi-
tively with the state-of-the-art production Halide compiler,
and significantly better than Halide’s LLVM Back end (with
additional LLVM IR optimizations) on x86 and Hexagon ar-
chitectures (as shown in Figs. 6a and 6b, and discussed later,
below). ARM support was added by a third student who was
not part of the project and was completely unfamiliar with
the implementation of Hydride. Without much guidance
or documentation, he implemented a parser for ARM pseu-
docode specification from [2], integrated it into Hydride,
and added support for ARM in Hydride in nearly 3 months,
and achieved performance nearly the same as the production
Halide, as shown in 6c. Companies like Google, Adobe, and
Qualcomm have invested in large engineering teams over
the past decade to develop, maintain and (in significant part)
heavily optimize the code generation support in the produc-
tion Halide compiler: the earliest Github commits to Halide’s
x86 back end were made on November, 2013 (10 years); the
HVX back end in March, 2016 (8 years); the ARM back end
in February, 2013 (over 10 years). The fact that Hydride is
able to approximately match Halide’s performance across
real-world benchmarks for three complex architectures with
the engineering effort of three people in little over a year is
a testimony to the degree of automation and retargetability
Hydride provides, and significant reduction in engineering
effort and time it achieves.

6.2 AutoLLVM IR Results

Table 1 shows the number of instructions Hydride supports
for each architecture and the number of AutoLLVM IR in-
structions it generates for each of them individually and for
all of them combined. HVX has fewer equivalence classes
than the other two since it is a much smaller, and more spe-
cialized, instruction set for DSP; therefore, HVX has fewer
common equivalence classes with x86 and ARM. ARM has
few common equivalence classes with x86 and HVX because

Table 1. AutoLLVM IR results for each architecture.

Architecture ISA Size AutoLLVM Size IR Size % of ISA Size

x86 2,029 136 6.7%
HVX 307 115 37.5%
ARM 1,221 177 14.5%

x86 + HVX 2336 232 9.9%
x86 + ARM 3250 302 9.3%

HVX + ARM 1528 286 18.7%
x86 + HVX + ARM 3,557 397 11.2%

Table 2. Bugs found in Rake. Operations are abbreviated as ARS:
Arithmetic Right Shift, LS: Left Shift.

Files Lines Bug Description

halide/ir/interpreter.rkt 536 Semantics of ARS not masked.
hvx/interpreter.rkt 1146 ARS’ operands not masked.
hvx/interpreter.rkt 1163 Rounding/Saturating ARS not masked.
hvx/interpreter.rkt 795 LS operands not masked.
hvx/interpreter.rkt 802 fused LS and accumulate not masked.

%t1 = llvm.hydride.transpose(v1, v2, 1024, 16) 

0 1 2 3 4 5 6 7 … 0 1 2 3 4 5 6 7 …

0 0 2 2 4 4 6 6 … 1 1 3 3 5 5 7 7 …

0 0 1 1 4 4 5 5 …

0 0 1 1 2 2 3 3 …

2 2 3 3 6 6 7 7 …

4 4 5 5 6 6 7 7 …

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 …

Step 1

Step 2

Step 3

llvm.hydride.interleave.HiLo2(v1, v2) 

llvm.hydride.interleave.HiLo4(v1, v2) 

llvm.hydride.interleave.HiLo8(v1, v2) 

Fig. 5. Hydride generates this complex HVX instruction that per-
forms 2x2 block transpose between vectors. x86 has no such in-
struction, but data layout transformations shown in each step can
be achieved using x86’s interleaving instructions.

significant number of ARM instructions are fused instruc-
tions (e.g., fused SIMD add and subtraction instructions) that
do not exist in x86 and HVX.
Rake only supports 164 HVX and 200 ARM instructions;

Hydride supports ~2x more HVX and ~6x more ARM in-
structions than Rake. Rake requires implementing code gen-
eration to target instructions by manually implementing
semantics of target instructions, which is an onerous, cum-
bersome and time-consuming process. Table 2 lists bugs
we found in Rake’s implementation of HVX semantics. Hy-
dride, however, automatically generates semantics for ISAs
once the parsers for ISA pseudocodes are implemented; so
this is a one-time effort. Neither Rake nor Hydride support
synthesis of memory instructions such as loads and stores.
Hydride supports more complex instructions than Rake in
HVX: Hydride supports and often generates vshuffvdd
(shown in Figure 5 as composition of x86 instructions) and
vdealvdd instructions to effectively transpose huge vec-
tors. Hydride supports several variants of dot product and
swizzle instructions that are not supported by Rake; these
are critical for high-performance code and result in speedups
against Rake (Figure 6b). Like Rake, Hydride only supports
integer instructions; floating-point is left to future work.



Hydride: A Retargetable and Extensible Synthesis-based Compiler ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

6.3 Runtime Performance

Performance on x86. Hydride outperforms Halide’s pro-
duction x86 back end by a geomean of 8% and Halide’s
LLVM back end for x86 by 12% (Figure 6a). It gets signif-
icant speedups of over 1.30x over Halide’s x86 back end and
1.42x over Halide’s LLVM Back end for Matrix Multiplication
benchmarks – Row 2 of Table 3 shows the faster non-SIMD
(dot product and interleave) instructions Hydride generates
vs the slower SIMD code that Halide’s x86 Back end gen-
erates. Hydride performs at least as well as Halide’s x86
back end on 31 benchmarks (speedups up to 1.35x) including
convolution benchmark on which Hydride gets a modest
speedup of 4%, again, due to generation of slightly better
dot product instructions (Row 3 in Table 3). Hydride gets
small slowdowns on 2 benchmarks, by 5% on add and 4%
on softmax, because LLVM’s x86 back end (which is used in
Hydride) pattern-matches specialized swizzle instructions
to higher-latency x86 permute instructions. Hydride per-
forms just as well as or outperforms Halide’s LLVM Back
end (maximum speedup of 81%).
Performance on Hexagon. Hydride performs just as

well as Halide’s Hexagon Back end and outperforms Halide’s
LLVM Back end on Hexagon by geomean of ~2x (Figure 6b).
Hydride performs at least as well as Halide on 17 bench-
marks (speedups up to 1.36x), and performs within 15% of
Halide on 14 benchmarks. Hydride suffers frommore serious
slowdowns relative to Halide on 2 benchmarks: gaussian7x7
(0.54x) and conv3x3a16 (0.78x). For gaussian7x7, Halide sup-
ports specialized patterns that enable it to analyze and pattern-
match code in a large window of instructions spanning multi-
ple basic blocks and generate a four-way dot product vrmpy
instruction, which Hydride fails to generate because the
window to synthesize code for is too large for the synthe-
sis to be tractable. Despite generating similar, and in some
cases better, non-SIMD (i.e., cross-lane) code than Halide in
other benchmarks including matrix multiplication (Row 1
of Table 3), Hydride gives slight slowdowns because Hy-
dride is unable to move intermediate pair of interleave and
deinterleave instructions across multiple basic blocks closer
and eliminate them, whereas Halide deploys a specialized
optimization pass in HVX back end. Hydride outperforms
Halide’s LLVM Back end significantly on all benchmarks
with maximum speedup of 81% on blur3x3. We could not
compile baseline benchmarks for convolution and bench-
marks involving GeLU because the register allocation in
LLVM’s Hexagon back end fails.
We also compared Hydride against Rake [1]. Hydride

outperforms Rake on all the benchmarks we could evaluate
(it failed to compile 28 benchmarks), with geomean speedup
of 25% and maximum speedup of 80% on average pool, with
two exceptions. We see small slowdowns on add (5%) and
max pool (8%) because the LLVM’s HVX back end used by

Hydride generates machine code with more register spills
in these cases.
Performance on ARM. Hydride achieves a small ge-

omean speedup of 3% over Halide’s production ARM back
end and 26% over Halide’s LLVM back end on ARM (Fig-
ure 6c). Hydride gets significant speedups relative to the
former on blur5x5 (28%) and blur7x7 (26%). It gets small
slowdowns of less than 5% on 4 benchmarks and 10% on
gaussian7x7. Hydride generally outperforms Halide’s LLVM
back end (maximum speedup of 5.53x) across all benchmarks.
Rake purports to support ARM, but fails to successfully com-
pile any benchmark. Matching the performance of the pro-
duction Halide’s ARM back end and outperforming Halide’s
LLVM back end decisively is an impressive result for roughly
three months of work by one student.

6.4 Compile Times

Table 4 shows the compilation times for benchmarks to com-
pile with Hydride.
Column I shows synthesis times when starting with an

empty memoization cache (Section 4.1), i.e., Hydride starts
synthesis afresh for each benchmark. Synthesis takes a ge-
omean time of 9 min. for ARM, 18 min. for X86, and 39 min.
for HVX. Synthesis takes longer for HVX because of the
complexity of very specialized instructions. Longer synthe-
sis times allow for the possibility that complex instructions
can be generated, important for HVX, which potentially per-
form better than simpler SIMD instructions sequences (i.e.,
that are fully independent across lanes). This is why Hy-
dride gets large speedups against Halide’s LLVM back end,
which only generates these simpler SIMD instructions. Note,
however, that longer synthesis times do not guarantee better
performance: we see a slowdown on gaussian7x7 despite
one of the highest synthesis times.
To evaluate the potential benefits of caching on compila-

tion of new benchmarks, we evaluated compilation times
when the memoization cache has been populated with syn-
thesis results for all other benchmarks except the benchmark
being compiled. The results (Column II) show that caching
greatly speeds up compilation, with geomean times of ~7.5,
~9 and ~11 min for ARM, x86 and HVX, signifying significant
commonality in input subexpressions across benchmarks.

Column III represents the best-case scenario (recompiling
a benchmark twice, e.g., when schedules are not changed);
it shows recompilation times when memoization cache is
already populated with synthesis results, so resynthesis is
unnecessary. These times are far lower: ~1.5, ~2.5 and ~2
min on ARM, x86, and Hexagon. These times are mostly
dominated by cache lookups for synthesis results, which is
slow because of Racket’s inefficient hash-table implementa-
tion and high initialization overhead (Racket initializes every
time it is invoked to synthesize code). To quantify this over-
head, we compiled an empty program, then multiplied that
by the min, median and max number of expressions being
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Fig. 6. Performance of Hydride against Halide’s target-specific back ends, Halide’s LLVM back end and Rake’s HVX back end. Fused kernels
are abbreviated as M: Matmul, B: Bias Add, R: ReLU, G: GeLU and E: Element-wise Add.

compiled across our benchmarks to account for repeated
invocations. The overheads (Table 4) are as high as 5.5–60
minutes for the largest cases. A fast language like C++ would
greatly reduce cache lookups times.

Halide, the DSL, separates algorithms (computations) from
schedules (loop transformations such as tiling, unrolling,
etc.). Halide programmers often tweak the schedules by
changing order of schedules, tiling, loop unroll factors, etc.,
without having to modify the algorithms. Column IV repre-
sents a more common and realistic scenario, where program-
mers tune the schedules of their programs to optimize for
different shapes of input tensors, except for vectorization fac-
tors (the maximum length of the target register). We observe
that in this scenario, as long as vectorization factors and
the loops that are vectorized remain unchanged, Hydride

will not need to resynthesize code every time programmers
modify their schedules. Geomean compilation times after
modifying tiling, rerolling factors, loop fusion strategies, etc.
in our original benchmarks is ~3 minutes on x86, ~1.5 min-
utes on HVX and ~4 minutes on ARM – which are close to
when compiling with full cache (Column III). with Hydride,
programmers only need to synthesize with a vectorization
factor once; from then on Hydride can keep reusing the
synthesis results from the cache regardless of how other
schedules are changed. This works because schedules pri-
marily affect memory access patterns, data locality, etc. and
Hydride only handles generation of compute and swizzle
instructions and not memory instructions.



Hydride: A Retargetable and Extensible Synthesis-based Compiler ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Table 3. Efficient complex, non-SIMD code generated by Hydride relative to simpler, SIMD code by Halide

Halide IR Expression Halide Generated Code Hydride Synthesized Code

// Matmul (HVX)
%0 = <64xi32> cast-int %arg1
%1 = <64xi32> cast-int %arg2
%2 = <32xi32> mul %0[0:32] %1[0:32]
%3 = <64xi32> cast-int %arg3
%4 = <64xi32> cast-int %arg4
%5 = <32 x i32> mul %3[32:64]

%4[32:64]
%6 = <64 x i32> concat %2 %5
%7 = <64 x i32> sat-add %6 %arg0

// Cost: 18
// Perform Sign Ext
%0 = <32 x i32> unpack_vh %arg1[0:32]
%1 = <32 x i32> unpack_vh %arg2[0:32]
// 32-bit mul using 16-bit shift & add
%2 = <32 x i32> vmpyieoh %0 %1
%3 = <32 x i32> vmpyiewuh_acc %2 %0 %1
// Repeat for [32:64] slice
%8 = <64 x i32> vcombine %3 %7
%9 = <64 x i32> vaddwsat_dv %arg0 %8

// Cost: 13
// Perform Sign Ext
%0 = <64 x i32> vunpack %arg1
%1 = <64 x i32> vunpack %arg2
// Cross lane 2-point reduction with

saturating acc
%2 = <32 x i32> vdmpyhvsat_acc %arg0

[0:32] %0[:32] %1[:32]
// Repeat for [32:64] slice
%6 = <64 x i32> vcombine %2 %5

// Matmul (x86)
%0 = <16 x i32> cast-int %arg1
%1 = <16 x i32> cast-int %arg2
%2 = <16 x i32> mul %0 %1
%3 = <16 x i32> cast-int %arg3
%4 = <16 x i32> cast-int %arg4
%5 = <16 x i32> mul %3 %4
%6 = <16 x i32> add %2 %5
%7 = <16 x i32> add %arg0 %6

// Cost: 34
// Elementwise Sign-Ext from 16 to 32

bits
%0 = <16 x i32> cvtepi16_epi32 %arg1
... // "sequence of sign-ext

instructions".
// Elementwise mul to produce 64 bits,
// then take lower 32 bits
%4 = <16 x i32> mullo_epi32 %0 %1
...
// Elementwise addition
%6 = <16 x i32> add_epi32 %4 %5
...

// Cost: 25
// Interleaving swizzle to layout

elements
%0 = <16 x i32> cvtepu16_epi32 %arg1
... // "sequence of sign-ext

instructions".
%4 = <32 x i16> packus_epi32 %0 %1
%5 = <32 x i16> packus_epi32 %2 %3
%6 = <32 x i16> unpacklo_epi16 %4 %5
%7 = <32 x i16> unpackhi_epi16 %4 %5
// two point reduction with sign-ext

and acc.
%8 = <16 x i32> dpwssd %arg0 %6 %7

// Conv_nn (x86)
%0 = <32 x i32> cast-int %arg0
%1 = <32 x i32> cast-int %arg1
%2 = <32 x i32> mul %0 %1
%3 = <16 x i32> reduce-add %2 2
%4 = <16 x i32> add %3 %arg2

// Cost: 6
// 2-point reduction without acc
%0 = <16 x i32> madd_epi16 %arg0 %arg1
// Accumulate seperately
%1 = <16 x i32> add_epi32 %0 %arg2

// Cost: 5
// 2-point reduction with acc
%0 = <16 x i32> dpwssd %arg2 %arg0 %

arg1

6.5 Synthesis Sensitivity Analysis

Because of the large sizes of individual instruction sets,
adding all target instructions to the synthesis grammar ren-
ders synthesis intractable and leads to an out-of-memory
exception. Hydride’s Code Synthesizer employs multiple
heuristics to make synthesis feasible and enable highly per-
formant code generation across multiple targets described
in Sections 4.2 and 4.3 .

Table 5 describes the effect of toggling these heuristics on
synthesis times when generating the dot-product operations
for x86, HVX and ARM. Including only 50 target instructions
using Hydride scoring heuristic (Section 4.3 (c)), synthesis
exceeds the timeout of 4 hours without terminating. There-
fore, more aggressive pruning heuristics are needed to make
synthesis complete in a reasonable amount of time.
Heuristics described in Section 4.3 (a) and (b) (together

signified as BVS (bitvector-based screening) in Table 5) are
the most basic heuristics that detect mismatches between
characteristics of the constituent bitvector operations (in
terms of operation type: bvadd, bvsub, etc.) in instruction
semantics and an input expression to eliminate an equiva-
lence class from a grammar. These heuristics cause synthesis
to terminate in hundreds of seconds while producing the
desired dot product expression and this is used a baseline
for measuring relative speeds up achieved with Hydride’s
other heuristics in Figure 7.

Impact of lane-wise synthesis.As described in Section 4.2,
computation patterns in vector operations repeat across
lanes, and Hydride generates constraints on a few set of
lanes of an output vector and synthesizes a program that
satisfies equality with the input expression on those lanes
only; and then it verifies the correctness of the synthesized
expression over all lanes (which takes negligible amount of
time). This heuristic speeds up synthesis for x86 by 2x; ARM
by 1.4x; and HVX by 2.8x.
Impact of scaling. Synthesis complexity grows expo-

nentially with register size; therefore, reducing register size
reduces synthesis times, regardless of the target architec-
ture (described in Section 4.2). Its impact is most significant
for HVX which effectively uses 1024- and 2048-bit registers,
whereas x86 and ARM use relatively smaller registers.

Impact of scaling + lane-wise synthesis. Both scaling
and lane-wise synthesis together speed-up synthesis by 2x
for x86, 12.8x for HVX and 3.6x for ARM.

Impact of score-based equivalence class ops selection

(SBOS). As described in Section 4.3 (c), after applying all
the aforementioned heuristics, Hydride selects operations
from equivalence classes which have the greatest number
of bitvector operations that are similar to those in an input
expression, and this leads to a further reduction in grammar
size. This heuristic, along with other heuristics, speeds up
synthesis by 2.7x for x86, 20.8x for HVX and 6x for ARM.
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Table 4. Compilation times with Hydride on x86, HVX, and ARM.

I II III IV

Compilation Times in seconds

(# of Expressions)

Compilation times

of nth benchmark (s)

Compilation times

with full cache in (s)

Compilation times after

modifying schedules (s)

Benchmark x86 HVX ARM x86 HVX ARM x86 HVX ARM x86 HVX ARM

cache lookup overhead (MIN) 15 (1) 6 (2) 10 (4)
cache lookup overhead (MEDIAN) 50 (18) 25 (10) 103 (48)
cache lookup overhead (MAX) 880 (409) 330 (136) 2449 (1296)
sobel 3x3 8300 (4) 4740 (6) 590 (64) 2469 4655 590 103 54 420 62 55 366
sobel 5x5 10511 (80) 9171 (10) 332 (52) 11037 3599 326 1060 60 279 459 101 952
dilate 3x3 90 (8) 80 (6) 251 (32) 91 80 148 74 30 108 48.5 46 107
dilate 5x5 90 (1) 120 (6) 86 (4) 34 77 20 39 45 16 36 42 15
dilate 7x7 45 (1) 120 (12) 41 (8) 35 79 38 30 53 34 50 39 31
box blur 3x3 724 (198) 450 (4) 82 (14) 957 105 50 500 30 42 169 40 112
box blur 5x5 943 (203) 226 (22) 8832 (296) 1062 140 5135 500 60 764 264 191 1072
box blur 7x7 1155 (210) 6900 (49) 8274 (784) 1216 5200 8903 500 222 2 408 173 1922
median 3x3 429 (20) 960 (42) 7247 (20) 422 800 6691 120 120 2 340 178 4
gaussian 3x3 2600 (12) 11760 (4) 133 (48) 2292 7875 168 78 60 125 54 72 111
gaussian 5x5 5326 (8) 10800 (44) 776 (48) 3987 10768 1371 70 150 139 41.5 71 143
gaussian 7x7 12041 (16) 39480 (7) 1574 (268) 5846 29460 1963 144 240 685 101 214 678
l2norm 6000 (22) 20600 (7) 7068 (1296) 1540 8077 5327 106 60 4181 186 75 8089
conv_nn 22000 (284) 54000 (136) 18270 (179) 15000 46892 16966 1221 628 581 1732 869 1829
conv3x3a16 23940 (16) 25200 (31) 304 (128) 23110 14799 395 263 146 317 97 159 302
depthwise conv 11000 (409) 60274 (49) 1672 (361) 4684 39000 1210 1302 525 957 4785 430 6624
average pool 640 (9) 4487 (2) 203 (40) 49 4860 125 91 30 103 150 64 292
max pool 100 (2) 68 (7) 58 (14) 58 30 52 43 30 40 89 39 136
fully connected 8563 (11) 36000 (37) 727 (57) 4002 3861 4877 206 160 163 292 210 148
add 2261 (30) 9480 (6) 259 (120) 2007 3752 535 141 79 331 284 53 514
mul 6000 (78) 45000 (6) 2210 (120) 484 40896 2101 307 600 330 624 350 1310
softmax 4925 (256) 14000 (72) 3107 (720) 2415 8100 3203 300 400 1777 670 1411 3633
matmul [batch size = 1] 125 (16) 500 (4) 97 (16) 129 47 57 81 60 45 83 76 83
matmul [batch size = 2] 125 (16) 500 (4) 97 (16) 129 47 57 81 60 45 83 76 83
matmul [batch size = 4] 125 (16) 500 (4) 97 (16) 129 47 57 81 60 45 83 76 83
average pool+add 3500 (9) 5000 (2) 15277 (40) 3193 36 4790 59 40 104 59 46 298
max pool+add 40 (2) 1000 () 83 (8) 60 300 70 30 20 25 34 25 86
matmul + bias 198 (32) 500 (12) 142 (32) 110 82 104 100 50 83 95 100 124
matmul + bias + relu 228 (32) 1000 (12) 188 (32) 130 90 104 120 55 86 126 65 158
matmul + bias + gelu 2980 (48) 450 (20) 815 (192) 200 90 785 207 68 462 1020 80 256
matmul + bias + add 227 (32) 1000 (12) 174 (32) 110 300 105 100 55 89 273 92 79
matmul + bias + relu + matmul 6274 (80) 350 (44) 868 (320) 300 170 994 278 110 725 417 200 379
matmul + bias + gelu + matmul 3100 (80) 300 (44) 848 (320) 300 175 999 273 100 729 208 91 394
Geomean (33 benchmarks) 1116.9 (23) 2348.1 (11) 529 (64) 520 673.0 455 151.9 81.1 133 179.2 98.5 252

Table 5. Synthesis sensitivity analysis for x86, HVX, and ARM. BVS: Bitvector-based screening eliminates operations in an
equivalence class from a grammar if the characteristics of the constituent bitvector operations do not match that of an inpput
expression. SBOS: Score-based selection of operations from an equivalence class to add to the grammar for synthesis.

Synthesis Setting x86 HVX ARM

# of Operations

in Grammar

Synthesis times

(seconds)

# of Operations

in Grammar

Synthesis times

(seconds)

# of Operations

in Grammar

Synthesis times

(seconds)

All target instructions 2029 Intractable 307 Intractable 1221 Intractable
Top 50 instructions based on score 50 14400+ 50 14400+ 50 14400+
BVS 26 236 24 997 25 628
BVS + lane-wise 26 118 24 360 25 452
BVS + scaling 26 142 24 108 25 165
BVS + scaling + lane-wise 26 115 24 78 25 175
BVS + scaling + lane-wise + SBOS 23 86 18 48 18 104

7 Related Work

Superoptimization uses instruction semantics to search
for high-performance sequences of instructions equivalent
to the input program’s instruction sequences. Bansal and
Aiken [4] developed a superoptimizer to perform peephole
optimizations on short sequences of x86 instructions exhaus-
tively. Souper [21] and Minotaur [15] are superoptimizers for
peephole optimizations on LLVM IR. Unlike Hydride, they
are not easily extensible to new ISAs since the semantics of

their IRs are manually implemented and have no support for
automatically extending a language-independent IR, and do
not support generation of vector instructions. The idea of
scaling down register sizes before synthesis and then scaling
the results back up comes from Phothilimthana et al. [16],
which they apply for superoptimization of a limited number
of scalar ARM instructions. Unlike Hydride, none of these
superoptimizers generate ISA semantics automatically to
support program synthesis and they provide only limited



Hydride: A Retargetable and Extensible Synthesis-based Compiler ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

R
el

at
iv

e 
Sp

ee
du

p

0
1
2
3
4
5
6
7
8

x86 HVX ARM

BVS BVS + Lane-wise BVS + Scaling 
BVS + Scaling + Lane-wise BVS  + Scaling + Lane-wise + SBOS

Fig. 7. Speedup of synthesis using Hydride’s synthesis heuristics

ISA coverage. More generally, Hydride is a highly retar-
getable and extensible compiler system that automatically
generates high-performance code for multiple targets.
Instruction Selection. Cattel [6] first proposed using

machine descriptions to generate target-specific code gen-
erators. Buchwald, et al.[5] uses program synthesis offline
on a large set of input programs to automatically gener-
ate pattern-matching rules for 32-bit scalar x86 instructions.
Rake [1] is a compiler for Halide that uses program syn-
thesis to generate a hand-implemented Uber IR to target
HVX and ARM. It employs a technique similar to Hydride’s
lane-wise synthesis to enable synthesis of only two swizzle
patterns: interleave and deinterleave. Moreover, since Rake
uses manually-implemented semantics, it is not scalable to
larger ISAs such as x86. Pitchfork [19] supports synthesis
of fixed-point computations for x86 AVX2, HVX and ARM
Neon. Importantly, it does not synthesize swizzle instruc-
tions, thereby leading to substantial slowdowns on kernels
such as matmuls and convolutions.
Autovectorization. Vegen [8] is an autovectorizer for

x86 that automatically generates pattern matching rules for
autovectorization from x86 ISA specification. It improves
the coverage of x86 instructions, especially complex non-
SIMD compute instructions. However, the rules are brittle
since Vegen does not generate multiple variants of patterns.
Also, Vegen does not support specialized swizzle instructions
which are critical for performance of tensor and stencil work-
loads. Diospyros [27] is a target-specific autovectorizer that
synthesizes vector instructions for Tensilica for small tensor
kernels using equality saturation. The semantics for Tensil-
ica’s ISA is manually implemented. Moreover, its synthesis
strategy is not scalable to large tensor programs. Isaria [25]
extends Diospyros to automatically generate rewrite rules
from an ISA specification during an offline phase and use
these rules to perform equality saturation when compiling
an input program. However, it suffers from the same lim-
itations of Diospyros. Porcupine [10] is an autovectorizer
that uses manually-implemented semantics for limited set
of SIMD instructions to synthesize code for homomorphic
encryption. It also requires users to provide reference and
sketch implementation with holes for their input programs.
Hydride does not require users to supply reference and
sketch and supports a wider range of instructions.

8 Conclusions

We have proposed Hydride, a novel, fully automated ap-
proach to compiler construction, which automatically gener-
ates the core language- and machine-independent compiler
IR with a formal semantics, given only a set of machine ISA
pseudocode specifications published by hardware vendors.
The IR semantics can be used to implement compilers for
high-performance languages using program synthesis in-
stead of laboriously-engineered and brittle pattern-matching
rules. This results in high instruction set coverage and high-
performance code, even for large, complex instruction sets.

The Hydride approach can benefit other compiler infras-
tructures. For example, we are currently using Hydride
in MLIR to automatically generate target-agnostic dialects
and low-level target-specific dialects from ISA specifications.
Such dialects are akin to ‘x86Vector’ and ‘ArmNeon’ dialects
but with far better instruction coverage; moreover, it gener-
ates a dialect for Hexagon that does not current exist. The
formal semantics automatically generated by Hydride can
be used to automatically generate lowering code from ‘vec-
tor’ and ‘arith’ dialects to the automatically-designed dialects
using synthesis. No such capability exists in MLIR today.
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